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Introduction 

For composers interested in the modification of 
natural sounds, the phase vocoder is a digital signal 
processing technique of potentially great signifi- 
cance. By itself, the phase vocoder can perform very 
high fidelity time-scale modification or pitch trans- 
position of a wide variety of sounds. In conjunction 
with a standard software synthesis program, the 
phase vocoder can provide the composer with arbi- 
trary control of individual harmonics. But use 
of the phase vocoder to date has been limited 
primarily to experts in digital signal processing. 
Consequently, its musical potential has remained 
largely untapped. 

In this article, I attempt to explain the operation 
of the phase vocoder in terms accessible to musi- 
cians. I rely heavily on the familiar concepts of sine 
waves, filters, and additive synthesis, and I employ a 
minimum of mathematics. My hope is that this 
tutorial will lay the groundwork for widespread use 
of the phase vocoder, both as a tool for sound analy- 
sis and modification, and as a catalyst for continued 
musical exploration. 

Overview 

The phase vocoder has its origins in a long line of 
voice coding techniques aimed at minimizing the 
amount of data that must be transmitted for intel- 
ligible electronic speech communication. Indeed, 
the word "vocoder" is simply a contraction of the 
term "voice coder." The phase vocoder is so named 
to distinguish it from the earlier channel vocoder, 
which is described in this paper as well. Commer- 
cial analog "vocoders" for electronic music are of 
the channel-vocoder type. The phase vocoder was 
first described in an article by Flanagan and Golden 
(1966), but it is only in the past ten years that this 
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technique has become popular and well understood. 
The phase vocoder is one of a number of digital 

signal processing algorithms that can be catego- 
rized as analysis-synthesis techniques. Mathemati- 
cally, these techniques are sophisticated algorithms 
that take an input signal and produce an output sig- 
nal that is either identical to the input or a modi- 
fied version of it. The underlying assumption is that 
the input signal can be well represented by a model 
(i.e., a mathematical formula) whose parameters 
vary with time. The analysis is devoted to deter- 
mining the values of these model parameters for the 
signal in question, and the synthesis is simply the 
output of the model itself. 

The benefits of analysis-synthesis formulations 
are considerable. Since the synthesis is based on 
analysis of a specific signal, the synthesized output 
can be virtually identical to the original input; this 
can occur even when the signal in question bears 
little relation to the assumed model. Furthermore, 
the parameter values derived from the analysis can 
be altered to synthesize useful modifications of 
the original signal. In the case of alteration, how- 
ever, the perceptual significance and musical utility 
of the result depends critically on the degree to 
which the assumed model matches the signal to be 
modified. 

In the phase vocoder, the signal is modeled as a 
sum of sine waves, and the parameters to be deter- 
mined by analysis are the time-varying amplitude 
and frequency for each sine wave. These sine waves 
are not required to be harmonically related, so this 
model is appropriate for a wide variety of musical 
signals. For example, wind, brass, string, speech, 
and some percussive sounds all lend themselves 
well to phase-vocoder representation and modifi- 
cation. Other percussive sounds (e.g., clicks) and 
certain signal-plus-noise sound combinations are 
not well represented as a sum of sine waves. These 
sounds can still be perfectly resynthesized, but 
attempts to modify them can lead to unanticipated 
sonic results. Since the musical utility of the phase 
vocoder lies in its ability to modify sounds predic- 
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Fig. 1. Filterbank inter- 
pretation of the phase 
vocoder. 

Fig. 2. Idealized frequency 
response of bandpass 
filters. 
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tably, signals that fail to fit the model are a poten- 
tial source of difficulty. 

In the sections that follow, I show in detail how 
the phase-vocoder analysis-synthesis is actually 
performed. In particular, I show that there are two 
complementary (but mathematically equivalent) 
viewpoints that may be adopted. I refer to these as 
the filterbank interpretation and the Fourier-trans- 
form interpretation, and I discuss each in turn. 
Lastly, I show how the results of the phase-vocoder 
analysis can be used musically to effect useful mod- 
ifications of recorded sounds. In all cases, the input 
to the phase vocoder is assumed to be a discrete 
(i.e., sampled) signal with a sampling rate R of at 
least twice the highest frequency present in the 
signal. Thus, for a typical high fidelity application, 
R = 50 KHz. The frequency range of interest is 
then from 0 Hz to R/2 Hz. 

The Filterbank Interpretation 

The simplest view of the phase-vocoder analysis is 
that it consists of a fixed bank of bandpass filters 
with the output of each filter expressed as a time- 
varying amplitude and a time-varying frequency 

R/2 

La 

I I 10'X 
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irge overlap 

Frequency (Hz) 
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(Fig. 1). For resynthesis, the amplitude and fre- 
quency outputs serve as the control inputs to a 
bank of sine-wave oscillators. The synthesis is then 
literally a sum of sine waves with the time-varying 
amplitude and frequency of each sine wave being 
obtained directly from the corresponding bandpass 
filter. If the center frequencies of the individual 
bandpass filters happen to align with the harmonics 
of a musical signal, then the outputs of the phase- 
vocoder analysis are essentially the time-varying 
amplitudes and frequencies of each harmonic. But 
this alignment is by no means essential to the 
analysis. 

The filterbank itself has only three constraints. 
First, the frequency response characteristics of the 
individual bandpass filters are identical except that 
each filter has its passband centered at a different 
frequency. Second, these center frequencies are 
equally spaced across the entire spectrum from 
0 Hz to R/2 Hz as shown in Fig. 2. Third, the indi- 
vidual bandpass frequency response is such that the 
combined frequency response of all the filters in 
parallel is essentially flat across the entire spectrum. 
(This is akin to the situation in a good graphic or 
parametric equalizer when the gain in each band is 
set to 0 db; the resulting sound has no added colora- 
tion. In the phase vocoder, this condition ensures 
that no frequency component is given dispropor- 
tionate weight in the analysis.) As a consequence 
of these constraints, the only issues in the design 
of the filterbank are the number of filters and the 
individual bandpass frequency response. 

The number of filters should always be suffi- 
ciently large so that there is never more than one 
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Fig. 3. An individual 
bandpass filter. 
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partial within the passband of any single filter. (In 
general, more filters mean narrower passbands for 
each filter.) For harmonic sounds, this means that 
there must be at least one filter for each harmonic 
in the frequency range from 0 Hz to R/2 Hz. Thus, 
for example, if the sampling rate R is 50 KHz, and 
the fundamental frequency of the sound is, say, 500 
Hz, then there are partials every 500 Hz. Conse- 
quently, there are (25000/500) = 50 partials in all, 
and we need 50 filters in our bank. 

For inharmonic and polyphonic sounds, the 
number of filters is usually much greater because 
the partials are no longer equally spaced. If the 
number of filters is too small, then the phase vo- 
coder does not function as intended because the 
partials within a single filter constructively and de- 
structively interfere with each other (i.e., they will 
"beat" with each other), and the information about 
their individual frequencies is coded as an unin- 
tended temporal variation in a single composite 
signal. 

The design of the representative bandpass filter 
is dominated by a single consideration: the sharper 
the filter frequency response cuts off at the band 
edges (i.e., the less overlap between adjacent band- 
pass filters), the longer the filter will ring in re- 
sponse to a single nonzero input sample (i.e., the 
longer the filter impulse response). Another way of 
saying that is: the sharper the filter frequency re- 
sponse, the longer it takes the filter to respond to 

changes in the input signal. This is a fundamental 
tradeoff in the design of any filter-a sharp fre- 
quency response comes only at the expense of a 
slow time response. 

In the phase vocoder, the consequence of this 
tradeoff is that to get sharp filter cutoffs with mini- 
mal overlap, one must use filters whose time re- 
sponse is very sluggish. For slowly-varying sounds, 
a sluggish time response in the individual filters 
may be perfectly acceptable. For more rapidly vary- 
ing sounds, however, it may be more desirable for 
the individual filters to have a rapid time response. 
In this case, there can be large frequency overlap be- 
tween adjacent bandpass filters. In practice, the best 
solution is generally discovered experimentally by 
simply trying different filter settings for the sound 
in question. 

A Closer Look at the Filterbank 

The previous paragraphs provide an adequate de- 
scription of the phase vocoder from the standpoint 
of the user, but they omit some important details. 
In particular, what needs to be clarified is that the 
actual implementation of the filterbank in the 
phase vocoder is rather different from that which 
might be employed in a commercial analog filter- 
bank. In this section, I show in detail how the out- 
put of a single phase vocoder bandpass filter is 
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Fig. 4. Spectral plot of the 
result of multiplying two 
sinusoids: (a) sinusoid 1, 
(b) sinusoid 2, (c) result. 

expressed as a time-varying amplitude and a time- 
varying frequency. 

A diagram of the operation of a single phase- 
vocoder bandpass filter is shown in Fig. 3. This pic- 
ture may appear a bit complicated, but it can easily 
be broken down into a series of fairly simple steps. 

In the first step, the incoming signal is routed 
into two parallel paths. In one path, the signal is 
multiplied by a sine wave with an amplitude of 1.0 
and a frequency equal to the center frequency of the 
bandpass filter; in the other path, the signal is mul- 
tiplied by a cosine wave of the same amplitude and 
frequency. (The reader should recall that sine and 
cosine waves are both sinusoidal waveforms that 
differ only in their starting point of phase. The 
cosine wave is always 90 degrees ahead of the sine 
wave.) Thus, the two parallel paths are identical 
except for the phase of the multiplying waveform. 

The next step in Fig. 3 is that, in each of the two 
paths, the result of the multiplication is fed into a 
lowpass filter. To understand the significance of this 
operation, first one must better understand the 
multiplication operation itself. 

Suppose we have a complex signal consisting of 
many frequency components. Multiplying that sig- 
nal by a sinusoid of constant frequency has the 
effect of shifting all the frequency components by 
both plus and minus the frequency of the sinusoid. 
An example of this is shown in Fig. 4 in which a 
single component at 110 Hz (represented as a co- 
sine wave of constant amplitude cos(27r1 lOt)), is 
multiplied by a cosine wave at 100 Hz (represented 
as cos(27rl100t)). The effect of this multiplication is 
to "split" the 110 Hz component into a low fre- 
quency component at 10 Hz (i.e., 110 Hz - 100 Hz) 
and a high frequency component at 210 Hz (i.e., 110 
Hz + 100 Hz). (A musical example of multiplying 
two signals can be found in the common effect of 
ring modulation. But in typical applications, nei- 
ther the input signal nor the multiplying signal is 
a simple sinusoid; the result of this is that every 
sinusoidal component of the input signal is split by 
every sinusoidal component of the multiplying sig- 
nal. Another musical example, the familiar phe- 
nomena of beats, is essentially the other side of the 
same coin: when two sinusoids are added together, 
the result can be expressed as a product of two sinu- 

cos(2rr 110 t)cos(27T 100 t) 
= cos(27r (110 - 100)t) + cos(27r (110 + 100)t) 
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soids-an amplitude modulation of one sinusoid by 
the other.) 

Now, if the result of the multiplication in Fig. 4 
is passed through an appropriate lowpass filter, only 
the 10 Hz sinusoid will remain. This sequence of 
operations (i.e., multiplying by a sinusoid of fre- 
quency f and then lowpass filtering) is useful in a 
variety of signal processing applications and is 
known as heterodyning. 

In the phase vocoder, heterodyning accomplishes 
two things. First, any input frequency components 
in the vicinity of frequency f are shifted down to 
the vicinity of 0 Hz and allowed to pass; input fre- 
quency components not in the vicinity of frequency 
f are similarly shifted but not by enough to get 
through the lowpass filter. Thus, heterodyning im- 
plements a type of bandpass filtering in which the 
passband is frequency-shifted down to very low fre- 
quencies. A bandpass filter of this type can easily 
be designed to have any desired center frequency 
simply by choosing the frequency of the hetero- 
dyning sine and cosine waves to equal the desired 
center frequency. Indeed, this is precisely how each 
of the filters in Fig. 2 is actually implemented. The 
result is not a "true" bandpass filtering because of 
the frequency-shifting of the passband, but it does 
effectively separate frequency components in the 
vicinity of frequency f from all other frequency 
components. Furthermore, as will be shown shortly, 
the frequency-shifting is straightforwardly taken 
into account in subsequent steps within the phase 
vocoder. 
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Fig. 5. Rectangular and 
polar coordinates. 

The second important consequence of hetero- 
dyning in the phase vocoder is that it provides a 
simple mechanism for computing the time-varying 
amplitude and frequency of the resulting signal. In 
Fig. 3, heterodyning is performed in each of the two 
parallel paths. But since one path heterodynes 
with a sine wave while the other path uses a cosine 
wave (and since the relative phase is preserved by 
the process), the resulting heterodyned signals in 
the two paths are out of phase by 90 degrees. Thus, 
in the above example, both paths produce a 10-Hz 
sinusoidal wave at the outputs of their respective 
lowpass filters, but one of the two sinusoids is 90 
degrees ahead of the other. What we really want, 
however, are not two sinusoids, but rather the am- 
plitude and frequency of a single sinusoid. This 
leads us to the next operation in the sequence of 
Fig. 3: the transformation from rectangular (i.e., 
Cartesian) coordinates to polar coordinates. 

Rectangular Coordinates versus Polar 
Coordinates 

Sinsuoidal motion is often introduced to students 
as a projection of uniform circular motion. I now 
show how this same point of view can be adopted 
to understand the transformation from "two sinu- 
soids" to "amplitude and frequency of a single 
sinusoid" within the phase vocoder. 

Suppose that we wish to plot the position of a 
point on the rotating wheel in Fig. 5 as a function 
of time. We have a choice of using rectangular coor- 
dinates (e.g., horizontal position and vertical posi- 
tion) or polar coordinates (e.g., radial position and 
angular position). With rectangular coordinates we 
find that both the horizontal position and the ver- 
tical position of our point vary sinusoidally, but the 
maximum vertical displacement occurs one quarter 
cycle later than the maximum horizontal displace- 
ment (e.g., the point is at its highest one-quarter 
cycle after being at its furthest to the right). Thus, 
the horizontal and vertical signals are sinusoids 
with a 90-degree phase difference between them. 
On the other hand, if we represent a circularly 
rotating point in terms of polar coordinates, we 
simply have a linearly increasing angular position 
and a constant radial position. 

r = Vxo2 + y02 

0= arctan( Yo 
Xo 

The situation in the phase vocoder is directly 
analogous. Since the result of the heterodyning and 
lowpass filtering operations is a pair of sinusoids 
with a 90-degree phase difference between them, 
the two parallel paths in the phase vocoder can be 
viewed equivalently as the rectangular (i.e., hori- 
zontal and vertical) coordinates of a single point on 
a rotating wheel. The position of this point can be 
represented equally well via polar coordinates. 

Actually, this choice between rectangular and 
polar coordinates occurs frequently in signal proc- 
essing but in a variety of different guises. In the 
terminology of communications systems (where 
heterodyning is most frequently encountered), the 
horizontal and vertical signals are the two parallel 
heterodyning paths, and the two resulting lowpass- 
filtered signals are known as the in-phase and quad- 
rature signals. In the literature of Fourier trans- 
forms, the horizontal and vertical signals are known 
as the real and imaginary components, and the 
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Fig. 6. Phase unwrapping. 

radial position and angular position are known 
respectively as magnitude and phase. (Note that 
this usage of the term "phase"-to indicate angular 
position as a function of time-is more general 
than the usage in which phase is simply the initial 
angular position, as when two signals are said to be 
"out of phase.") The magnitude-and-phase represen- 
tation is also the standard for describing filter fre- 
quency response, but in this case it is customary to 
plot only the magnitude, as in Fig. 2. 

To actually perform the conversion from rectan- 
gular to polar coordinates, we can use the formulas 
in Fig. 5. The radial position is the hypotenuse of 
the right triangle with the horizontal and vertical 
positions as the two sides. In phase vocoder terms, 
the time-varying radial position is the desired time- 
varying amplitude (i.e., magnitude). Thus, the 
amplitude at each point in time is simply the square 
root of the sum of the squares of the two hetero- 
dyned signals. Similarly, the time-varying angular 
position is the time-varying phase. Thus, the phase 
at each point in time is the angle whose tangent is 
(i.e., the arctan of) the ratio of the vertical position 
to the horizontal position. 

But relating the time-varying angular position to 
the desired time-varying frequency requires an addi- 
tional operation (see Fig. 3). Frequency is the num- 
ber of cycles which occur during some unit time 
interval. In terms of the rotating wheel, this can be 
stated as the "number of revolutions per unit time." 
Thus, to determine the time-varying frequency we 
need to determine the rate of rotation of the wheel. 
To do this, we can simply measure the change in 
angular position between two successive samples, 
and divide by the time interval between them. 
Hence, the frequency at each point in time is the 
difference between successive angular position 
values divided by the sample period. 

It turns out, though, that there is one additional 
problem here: the arctan function produces answers 
only in the range of 0 to 360 degrees. Thus, if we 
examine successive values of angular position, we 
may find a sequence such as 180, 225, 270, 315, 0, 
45, 90. This may appear to suggest that the instan- 
taneous frequency (i.e., rate of angular rotation) is 
not constant (because the difference between suc- 
cessive values is not always 45). What has actually 
happened is that we have gone through more than a 

0 (degrees) 

720 - 

360 - 

0 
0 (Degrees) 

720 - 

360 - 

0 ) 

, Time 

, Time 

single cycle. Therefore, if we want our frequency 
calculation to work properly, we should really write 
the sequence as 180, 225, 270, 315, 360, 405, 450. 
Then the difference between successive values is in- 
deed 45 in all cases. This process of adding in 360 
degrees whenever a full cycle has been completed is 
known as phase unwrapping. A comparison of the 
angular-position signal obtained directly from the 
rectangular-to-polar conversion and the unwrapped 
angular position-signal is illustrated in Fig. 6. 

The operations of phase unwrapping and calculat- 
ing rate-of-rotation (i.e., frequency) from successive 
unwrapped angular-position values are the two 
next-to-last operations in the sequence of steps in 
Fig. 3. But note that the frequency actually refers 
only to the difference frequency between the hetero- 
dyning sinusoid (i.e., the filter center frequency) and 
the input signal. (Remember that the rectangular- 
to-polar conversion and the rate-of-rotation calcula- 
tion are all performed only on the lowpass-filtered 
results of the heterodyning operation-e.g., on the 
10-Hz component that resulted from "splitting" the 
110-Hz component into components at 10 Hz and 
210 Hz.) Therefore the very final step in the phase- 
vocoder-analysis sequence is to add the filter center 
frequency back in to the instantaneous frequency 
signal calculated above. 

In summary, the internal operation of a single 
phase vocoder bandpass filter, as diagrammed in Fig. 
3, consists of (1) heterodyning the input with both a 
sine wave and a cosine wave in parallel, (2) lowpass 
filtering each result, (3) converting the two parallel 
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Fig. 7. Filterbank inter- 
pretation versus Fourier- 
transform interpretation. 

lowpass-filtered signals from rectangular to polar 
coordinates, (4) unwrapping the angular-position 
values, (5) subtracting successive unwrapped an- 
gular-position values and dividing by the time inter- 
val to obtain a frequency signal, and (6) adding the 
filter center frequency back in to the frequency sig- 
nal. This sequence of operations produces the de- 
sired time-varying parameter values. 

The Fourier-Transform Interpretation 

A complementary view of the phase-vocoder analy- 
sis is that it consists of a succession of overlapping 
Fourier transforms taken over finite-duration win- 
dows in time. It is interesting to compare this per- 
spective to that of the filterbank interpretation. In 
the latter, the emphasis is on the temporal succes- 
sion of magnitude and phase (or frequency) values 
in a single filter band. In contrast, the Fourier-trans- 
form interpretation focuses attention on the magni- 
tude and phase values for all of the different filter 
bands or frequency bins at a single point in time. A 
graphic representation of this distinction is shown 
in Fig. 7. 

It is important to understand that each of these 
viewpoints is really concerned only with the imple- 
mentation of the bank of bandpass filters. In either 
case, it is still necessary to convert the filter out- 
puts from rectangular to polar coordinates as de- 
scribed previously. So the real question here is how 
a sequence of overlapping Fourier transforms can 
behave like a bank of filters. 

Certain features of the Fourier transform have 
fairly simple interpretations in terms of a filter- 
bank. For example, the number of filter bands is 
simply the number of bins in the Fourier transform. 
Similarly, the equal spacing in frequency of the 
individual filters is a fundamental feature of the 
Fourier transform. But how does the Fourier view 
incorporate the shape of the bandpass filters (e.g., 
the steepness of the cutoff at the band edges) or the 
in-phase and quadrature signals? 

The Fourier transform can be seen as a gener- 
alization of the Fourier series. The Fourier series 
specifies the amplitudes of the various harmonics 
that must be added together to create a complex 

Frequency 
A 

( 0 0 0 ) Filter view 

Fourier view 
Time 

periodic waveform. If the waveform is perfectly 
periodic (i.e., it repeats itself indefinitely with no 
changes in period or waveshape), it is always pos- 
sible to synthesize it as the sum of appropriately 
weighted sinusoids with frequencies that are in- 
teger multiples of the fundamental frequency. In 
musical terms, the individual sinusoids are the har- 
monics; in mathematical terms, they are the com- 
ponents of the Fourier series. But since the initial 
phase of the periodic signal is arbitrary, it generally 
requires a sum of both sine and cosine components 
to match this initial phase correctly. Musical dis- 
cussions of harmonics tend to ignore this subtlety 
because the initial phase is itself of little perceptual 
significance. However, when the signal is not per- 
fectly periodic, then the phase can no longer be 
ignored. 

The discrete short-time Fourier transform is es- 
sentially a means of computing the Fourier series 
for signals that are not perfectly periodic. The basic 
idea is that the signal in question can be multiplied 
by a window function so that only a certain section 
of the signal is nonzero, and the Fourier series can 
be computed assuming that the windowed section 
repeats indefinitely. The exact shape of the window 
turns out to be important because the windowing 
operation smears the signal's spectrum so that each 
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bin of the Fourier transform (i.e., each component in 
the Fourier series) includes some energy from other 
bins nearby. The general rule is that the amount of 
smearing increases as the window duration gets 
shorter. Thus, the window function turns out to 
have exactly the same role as the filter impulse re- 
sponse in the filterbank interpretation of the phase 
vocoder (e.g., making the impulse response shorter 
increases the filter overlap or smearing). 

Similarly, the fact that each bin has both a sine 
component and a cosine component is equivalent 
to each filter in the filterbank interpretation having 
both an in-phase and quadrature signal. The polar 
representation of these two signals as a rotating vec- 
tor (i.e., a point on a rotating wheel) allows the pre- 
cise determination of the time-varying frequency 
within a single bin; this is done by comparing the 
orientation of the vector in successive Fourier trans- 
forms. For example, when the frequency of a par- 
ticular signal is exactly equal to that of a particu- 
lar Fourier transform bin, then successive Fourier 
transforms will always find the rotating vector for 
that bin in the same orientation. Successive phase 
values are thus equal, and their difference is zero. 
When the input signal frequency does not exactly 
match the bin frequency, the difference frequency 
can be calculated from the successive phase values 
exactly as described in the preceding section. 

In summary, the two complementary views of the 
phase-vocoder analysis can be described as follows. 
In the filterbank interpretation, the filtering is ac- 
complished by heterodyning and lowpass filtering 
to produce in-phase and quadrature signals. In the 
Fourier view, the bank of filters is a set of frequency 
bins, and the in-phase and quadrature signals are 
the real and imaginary components of the Fourier 
transform. In either case, it is still necessary to con- 
vert from rectangular to polar coordinates, and then 
to calculate the difference between successive un- 
wrapped phase values to determine the time-varying 
frequency within each filter (or bin). We may note 
that it is precisely this calculation of time-varying 
frequency that distinguishes the phase vocoder from 
the earlier channel vocoder. The channel vocoder 
computes only the time-varying amplitude within 
each filter (or bin) and makes no attempt to deter- 
mine the time-varying frequency. In other respects, 

it is essentially identical to the phase vocoder. 
These two differing views of the phase-vocoder 

analysis suggest two equally divergent interpreta- 
tions of the resynthesis. In the filterbank interpreta- 
tion, the resynthesis can be viewed as an additive- 
synthesis procedure with time-varying amplitude 
and frequency controls for each of a bank of oscil- 
lators. In the Fourier view, the synthesis is accom- 
plished by adding together successive inverse 
Fourier transforms, overlapping them in time to cor- 
respond with the overlapping of the analysis Fourier 
transforms. (Note, however, that this requires con- 
verting back from polar coordinates to rectangular 
coordinates prior to calculating the inverse Fourier 
transform.) 

Although the filterbank and Fourier views are 
mathematically equivalent, a particular advantage 
of the Fourier interpretation is that it leads to the 
implementation of the filterbank via the fast Fourier 
transform (FFT) technique. The FFT is an algorithm 
for computing the Fourier transform with fewer 
multiplications than would otherwise be required 
provided that the number of bins is a power of 2. 
The FFT produces an output value for each of N 
bins with (on the order of) N log2N multiplications, 
while the direct implementation of the filterbank 
requires N2 multiplications. Thus, the Fourier in- 
terpretation can lead to a substantial increase in 
computational efficiency when the number of fil- 
ters is large (e.g., if N = 1024, the savings is ap- 
proximately a factor of 100). 

It is also the Fourier interpretation that has been 
the source of much of the recent progress in phase- 
vocoder-like techniques. Mathematically, these 
techniques are described as short-time Fourier- 
transform techniques (Crochiere 1980; Portnoff 
1980; 1981a; 1981b; Griffin and Lim 1984). Such 
algorithms can also be referred to as multirate digi- 
tal signal processing techniques for reasons that will 
be made clear later (Crochiere and Rabiner 1983). 

Sample-Rate Considerations 

The input and output signals to and from the phase 
vocoder are always assumed to be digital signals 
with a sampling rate of at least twice the highest 
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frequency in the associated analog signal (e.g., a 
speech signal with a highest frequency of 5 KHz 
might be digitized-at least in principle-at 10 
KHz and fed into the phase vocoder). However, the 
sample rates within the individual filter bands of 
the phase vocoder do not need to be nearly so high. 
This is most easily understood via the filterbank 
interpretation. 

Within any given filter band, the result of the 
heterodyning and lowpass-filtering operation is a 
signal whose highest frequency is equal to the cut- 
off frequency of the lowpass filter. For instance in 
the above example, the lowpass filter may only pass 
frequencies up to 50 Hz. Thus, although the input 
to the filter was a speech signal sampled at 10 KHz, 
the output of the filter can be sampled (at least in 
the ideal case) at as little as 100 Hz without any 
error. This is true for each of the bandpass filters, 
because each filter operates by heterodyning a cer- 
tain frequency region down to the 0-50 Hz region. 

In practice, the lowpass filter can never have an 
infinitely steep cutoff. Therefore, it is generally 
advisable to sample the output of the filter at four 
times the cutoff frequency (e.g., 200 Hz) rather than 
two. Still, this represents an enormous savings in 
computation (e.g., the filter output is calculated 
200 times per second instead of 10,000 times per 
second). 

If we now seek to resynthesize the original input 
from the phase-vocoder-analysis signals, we face a 
minor problem. The analysis signals, which in the 
filterbank interpretation are thought of as providing 
the instantaneous amplitude and frequency values 
for a bank of sine-wave oscillators, are no longer at 
the same sample rate as the desired output signal. 
Thus, an interpolation operation is required to con- 
vert the analysis signals back up to the original 
sample rate. Even with this interpolation, this is 
much more computationally efficient than omit- 
ting the sample-rate reduction in the first place. 

In the Fourier-transform interpretation, an inter- 
polation is also required for resynthesis, but the 
details are less apparent. In the previous example, 
where the internal sample rate is only 2% (200 Hz/ 
10000 Hz) of the external sample rate, we simply 
skip 10000/200 = 50 samples between successive 
FFTs. As a result, the analysis FFT values are 

computed only 10000/50 = 200 times per second. 
It turns out, though, that the process of adding to- 
gether the successive overlapping inverse FFTs for 
resynthesis automatically accomplishes the nec- 
essary interpolation. 

Last, it should be noted that we have so far con- 
sidered the bandwidth of the output of the lowpass 
filter without any mention of the conversion from 
rectangular to polar coordinates. This conversion 
involves highly nonlinear operations which (at least 
in principle) can significantly increase the band- 
width of the signals to which they are applied. For- 
tunately, this effect is usually small enough in 
practice that it can generally be ignored. 

Applications 

The basic goal of the phase vocoder is to separate 
(as much as possible) temporal information from 
spectral information. The operative strategy is to 
divide the signal into a number of spectral bands, 
and to characterize the time-varying signal in each 
band. This strategy succeeds to the extent that this 
bandpass signal is itself slowly varying. It fails when 
there is more than a single partial in a given band, or 
when the time-varying amplitude or frequency of the 
bandpass signal changes too rapidly. "Too rapidly" 
means that the amplitude and frequency are not 
relatively constant over the duration of a single FFT. 
Equivalently, a signal is varying too rapidly if the 
amplitude or frequency changes considerably over 
durations that are small compared to the inverse of 
the lowpass filter bandwidth. (Recall that the dura- 
tion over which the transform is taken is inversely 
proportional to the lowpass filter bandwidth.) 

To the extent that the phase vocoder does succeed 
in separating temporal and spectral information, it 
provides the basis for an impressive array of musi- 
cal applications. Historically, the first of these to be 
explored was that of analyzing instrumental tones 
to determine the time-varying amplitudes and fre- 
quencies of individual partials. This application was 
pioneered by Moorer and Grey at Stanford Univer- 
sity in the mid 1970s in a landmark series of inves- 
tigations of the perception of timbre (Grey 1977; 
Grey and Moorer 1977; Grey and Gordon 1978; 
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Moorer 1978). (The heterodyne filter technique de- 
veloped by Moorer and used in those investigations 
is essentially a special case of the phase vocoder.) 

More recently, interest in the phase vocoder has 
focused more on its ability to modify and transform 
recorded sound materials in musically useful ways. 
The possibilities in this realm are myriad. However, 
two basic operations stand out as particularly signifi- 
cant. These are time scaling and pitch transposition. 

Time Scaling 

It is always possible to slow down a recorded sound 
simply by playing it back at a lower sample rate; this 
is analogous to playing a tape recording at a lower 
playback speed. But this kind of simplistic time ex- 
pansion simultaneously lowers the pitch by the 
same factor as the time expansion. Slowing down 
the temporal evolution of a sound without altering 
its pitch requires an explicit separation of temporal 
and spectral information. As noted above, this is 
precisely what the phase vocoder attempts to do. 

To understand the use of the phase vocoder for 
time scaling, it is helpful once again to consider the 
two basic interpretations described above. In the fil- 
ter bank interpretation, the operation is simplicity 
itself. The time-varying amplitude and frequency 
signals for each oscillator are control signals that 
carry only temporal information. Expanding the 
duration of these control signals (via interpolation) 
does not change the frequency of the individual 
oscillators at all, but it does slow down the tem- 
poral evolution of the composite sound. The result 
is a time-expanded sound with the original pitch. 

The Fourier transform view of time scaling is 
very similar, but with one additional catch. The 
basic idea is that in order to time-expand a sound, 
the inverse FFTs can simply be spaced further apart 
than the analysis FFTs. As a result, spectral changes 
occur more slowly in the synthesized sound than in 
the original. But this overlooks a critical detail in- 
volving the magnitude and phase signals. 

Consider a single bin within the FFT for which 
the signal within that bin is increasing in phase at a 
rate of 1/8 cycle (i.e., 45 degrees) per time interval 
(where the time interval in question is the time be- 

tween successive FFTs). This means that the suc- 
cessive phase values within the bin are incremented 
by 45 degrees. Spacing the inverse FFTs further 
apart means that the 45-degree increase now occurs 
over a longer time interval. But this means that the 
frequency of a signal has been inadvertently altered. 
The solution is to rescale the phase by precisely 
the same factor by which the sound is being time- 
expanded. Thus for time expansion by a factor of 
two, the 45-degree increase should be rescaled to a 
90-degree increase, because it occurs over twice the 
time interval of the original 45-degree increase. 
This ensures that the signal in any given filter band 
has the same frequency variation in the resynthesis 
as in the original (though it occurs more slowly). 

The reason that the problem of rescaling the 
phase does not appear in the filterbank interpre- 
tation is that the interpolation there is assumed to 
be performed on the frequency control signal as 
opposed to the phase. This is perfectly correct con- 
ceptually, but the actual implementation generally 
conforms more closely to the Fourier interpreta- 
tion. Also, by emphasizing that the time expansion 
amounts to spacing out successive "snapshots" of 
the evolving spectrum, the Fourier view makes it 
easier to understand how the phase vocoder can per- 
form equally well with nonharmonic material. 

To be sure, the phase vocoder is not the only 
technique that can be employed for this kind of 
time scaling. A number of time-domain procedures 
(i.e., not involving filtering or Fourier transforms) 
can be employed at substantially less computa- 
tional expense. But from the standpoint of fidelity 
(i.e., the relative absence of objectionable artifacts), 
the phase vocoder is by far the most desirable. 

Pitch Transposition 

Since the phase vocoder can be used to change the 
temporal evolution of a sound without changing its 
pitch, it should also be possible to do the reverse 
(i.e., change the pitch without changing the dura- 
tion). Indeed, this operation is easily accomplished. 
The procedure is simply to time-scale by the de- 
sired pitch-change factor, and then to play the re- 
sulting sound back at the "wrong" sample rate. For 
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Fig. 8. Spectral envelope 
correction. (a) original 
spectrum. (b) transposed 
spectrum. (c) corrected 
spectrum. 

example, to raise the pitch by an octave, the sound 
is first time-expanded by a factor of two, and the 
time-expansion is then played at twice the original 
sample rate. This shrinks the sound back to its 
original duration while simultaneously doubling all 
frequencies. In practice, however, there are also 
some additional concerns. 

First, instead of changing the clock rate on the 
playback digital-to-analog converters, it is more 
convenient to perform sample-rate conversion on 
the time-scaled sound via software. Thus, in the 
above example, we would simply designate a higher 
sample rate for the time-expanded sound, and then 
sample-rate convert it down by a factor of two so 
that it could be played at the normal sample rate. 
(It is possible to embed this sample-rate conversion 
within the phase vocoder itself, but this proves 
to be of only marginal utility and will not be dis- 
cussed further here.) 

Second, upon closer examination it can be seen 
that only time-scale factors that are ratios of in- 
tegers are actually allowed. This is clearest in the 
Fourier view because the expansion factor is simply 
the ratio of the number of samples between suc- 
cessive analysis FFTs to the number of samples be- 
tween successive synthesis FFTs. However, it is 
equally true of the filterbank interpretation because 
it turns out that the control signals can only be in- 
terpolated by factors that are ratios of two integers. 
Of course, this has little significance for time scal- 
ing because, while it may be impossible to find two 
suitable integers with precisely the desired ratio, 
the error is perceptually negligible. However, when 
time scaling is performed as a prelude to pitch trans- 
position, the perceptual consequences of such errors 
are greatly magnified (by virtue of the ear's sen- 
sitivity to small pitch differences), and considerable 
care may be required in the selection of two appro- 
priate integers. 

An additional complication arises when modify- 
ing the pitch of speech signals because the trans- 
position process changes not only the pitch, but 
also the frequency of the vocal tract resonances 
(i.e., the formants). For shifts of an octave or more, 
this considerably reduces the intelligibility of the 
speech. (This same phenomenon occurs in the pitch 
transposition of nonspeech sounds as well, but for 

Original spectrum 
A 

Ill Ii, 
(a) 

Frequency 

Transposed spectrum 
A 

(b) 
lIl ' > Frequency 

Transposed spectrum with 
original spectral envelope 

Frequency 
(c) 

these sounds intelligibility is not an issue. Conse- 
quently, the change in sound quality is not nearly 
so objectionable.) To correct for this, an additional 
operation can be inserted into the phase-vocoder 
algorithm as shown in Fig. 8. For each FFT, this 
additional operation determines the spectral enve- 
lope (i.e., the shape traced out by the peaks of the 
harmonics as a function of frequency), and then 
distorts this envelope in such a way that the subse- 
quent sample-rate conversion brings it back pre- 
cisely to its original shape. 

Conclusion 

The descriptions previously discussed in this ar- 
ticle address only the most elementary possibili- 
ties of the phase-vocoder technique. In addition to 
simple time scaling and pitch transposition, it is 
also possible to perform time-varying time scaling 
and pitch transposition, time-varying filtering (e.g., 
cross synthesis), and nonlinear filtering (e.g., noise 
reduction), all with very high fidelity. The phase vo- 
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coder analysis capabilities alone can be extremely 
useful in applications ranging from psychoacoustics 
to composition (e.g., individual harmonics of a 
sound can be separated in space). 
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Appendix 

While there is much to be said for a nonmathemati- 
cal description of the phase vocoder, there is also a 
limit to what can be understood in this fashion. In 
this Appendix I provide a brief mathematical re- 
statement of the foregoing description. 

Mathematically, the short-time Fourier transform 
X(n,k) of the signal x(n) is a function of both time 
n and frequency k. It can be written as 

X(n,k) = E x(m)h(n - m)e N km 
m = -- 

where h (n) is a window or filter impulse response 
as described below. 

The short-time Fourier transform is the analysis 
portion of the analysis-synthesis procedure. A gen- 
eral resynthesis equation is then given by 

oo N- 1 . 2rN 

x(n)= m f(n-m) - 
koX(m,k)e N (2) 

m = -oo N =0 

where f(n) is another window or filter impulse re- 
sponse. In the absence of modifications (and with 
certain constraints on h(n) and f(n)), this equation 
reconstructs the input perfectly. 

The analysis equation can be viewed from either 
of two complementary perspectives. On the one 
hand, Eq. [1] can be written as 

X(n, . 2ri 

X(n,k) = E (x(m)e' N -)h(n 
- m). 

m = -0 
(3) 

This describes a heterodyne filterbank. The kth fil- 
ter channel is obtained by multiplying the input 
x(m) by a complex sinusoid at frequency k/N times 
the sample rate. This shifts input frequency compo- 
nents in the vicinity of k/N times the sample rate 
down near 0 Hz (and also up near twice k/N times 
the sample rate). The resulting signal is then con- 
volved with the lowpass filter h (m). This removes 
the high-frequency components and leaves only 
those input frequency components originally in the 
vicinity of k/N times the sample rate (albeit shifted 
down to low frequency). Thus the output X(n,k), 
for any particular value of k, is a frequency-shifted, 
bandpass-filtered version of the input. 
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On the other hand, Eq. (1) can be regrouped as 

X(n,k)= E (x(m)h(n - m))e~- N (4) 
m = -00 

This is the expression for the discrete Fourier trans- 
form of an input signal x(m) which is multiplied by 
a finite-duration, time-shifted window h(n - m). 
Thus the output X(n,k), for any particular value of 
n, is the Fourier transform of the windowed input 
at time n. Instead of representing the output of a 
bank of parallel heterodyne filters, X(n,k) now rep- 
resents a succession of partially-overlapping Fourier 
transforms. 

Computationally, this latter view is particularly 
significant because the transform can be imple- 
mented as a fast Fourier transform (FFT). To see 
this, we can note that if the nonzero extent of the 
window is N samples or fewer (i.e., h(n) = 0 for in| 
> N/2), then Eq. (4) is simply 

N n+ 2 1 2 

X(n,k) = > x(m)h(n - m)e N (5) 
m = n - - 

With a change of variable (i = m - n + N/2), this 
can be rewritten as 

(6) 
X(n,k) = 

NI2 N - I 

e N 

' 
x(i + n - N/2)h(-i + N/2)e N 

and the summation is seen to have the proper form 
for an FFT implementation (i.e., a sum from i = 0 
to i = N - 1 of terms x(i)exp(- j2rki/N)). The ex- 
ponential phase term preceding the summation is 
important to include, but it is equivalent to shifting 
the time origin for the terms within the summa- 
tion. Hence, a cyclic rotation of the windowed sig- 
nal prior to Fourier transforming eliminates the 
need for an explicit multiplication by the 
exponential. 

As it turns out, this procedure is equally appli- 
cable in the case where the window duration is 
greater than N. The summation in Eq. (6) then as- 
sumes the general form 

M .271r 

E y([i}e- (7) 

where M > N. But the exponential terms involving 
i > N (e.g., i = N + 3) are identical to the corre- 
sponding terms involving i < N (e.g., i = 3) because 
(letting i = N + 1) 

---k(N + ) -i kN - k - c 
2 

k 
e N = k N e -Ne N = e-2rk e N (8) 

Since e-ji2rk = 1 for integer values of k, the summa- 
tion reduces to 

N- I rNsM + _. 27rT 
r0 

E y(rN + 1) e 'N 
I = 0 r = 0 

(9) 

Thus, even when the window is longer than the de- 
sired FFT size, the FFT formulation can still be 
used provided that the windowed signal is appropri- 
ately stacked and added (i.e., successive temporal 
segments are overlayed and added together). 

Using a window duration greater than N samples, 
though, does entail some additional complication. 
First, it turns out that the condition for perfect re- 
synthesis is that h(n) = 0 for n = IN (where 1 is any 
nonzero integer). This says that the window must 
be zero at integer multiples of N. If the window is 
fewer than N samples to begin with, then this con- 
dition is trivially satisfied. If the window is greater 
than N samples in duration, then an easy way to 
satisfy the condition is to make the actual window 
the product of the desired window and a sin(x)/x 
function with period N. 

Second, the duration of the analysis window h (n) 
is an important factor in selecting an appropriate 
synthesis window f(n). If the analysis window is 
shorter than N samples in duration, then it can be 
shown that an optimal synthesis window is simply 
an amplitude-scaled copy of the analysis window. If 
the analysis window duration is greater than N 
samples, then it is easier to think of the synthesis 
window as the impulse response of a filter that is 
performing interpolation. Then a good choice is to 
make the synthesis window the product of some 
simple window and a sin(x)/x function with period 
I (where I is the number of samples between the 
beginnings of successive Fourier transforms). 

Additional insight into the role of the analysis 
window can be gained by considering a narrow- 
band input signal to the phase vocoder given by 
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x(n) = A(n)cos( --knT + O(n)). (10) 

If both the amplitude A(n) and the instantaneous 
phase 0(n) are slowly varying, then it can be shown 
that the phase-vocoder analysis for the filter cen- 
tered at frequency 27rk/N results in 

00 

|X(n,k)| = I| A(m)h(n - m)e?IOm\ (11) 
m= -00 

arg[X(n,k) = arg[ E A(m)h(n - m)eilm)] (12) 
m = -oo 

where IX(n,k )l and arg[X(n,k )] are, respectively, the 
magnitude and phase of X(n,k). 

Ideally Eq. (11) would simply state |X(n,k )| = A (n). 
This would mean that the phase-vocoder analysis 
had perfectly extracted the amplitude of the input 
signal. In reality, though, we see that the phase- 
vocoder estimate of the amplitude is a smeared ver- 
sion of the true amplitude. If the input signal has a 
constant frequency of exactly 27rk/N, then 0(n) = 0 
for all n, and the amplitude estimate IX(n,k )1 is pre- 
cisely a lowpass-filtered version of the true ampli- 
tude A(n). If the input signal has a constant 
frequency not quite equal to the filter center fre- 
quency, then the amplitude estimate is attenuated 
by the gain of the lowpass filter at the difference 
frequency. 

The situation for the instantaneous phase esti- 
mate is similar but less conducive to a simple in- 
terpretation. It turns out, though, that the phase 
estimate is also smeared by a lowpass-filtering op- 
eration so that, for example, a sudden change in the 
input signal frequency results in a more gradual 
change in the instantaneous frequency estimate of 
the phase vocoder. 

The situation with phase is further complicated 

by the fact that when two sinusoids of different fre- 
quencies lie within the same filter bandpass, the 
composite signal has 180-degree jumps in phase 
whenever the composite amplitude goes through 
zero. This is a consequence of the fact that 

cos(A) + cos(B) = cos((A - B)/2)cos((A + B)/2). (13) 

The slowly varying cos((A - B)/2) can be thought of 
as the amplitude envelope modulating the more rap- 
idly varying cos((A + B)/2). But the phase-vocoder 
amplitude estimate is always positive. Hence, when 
cos((A - B)/2) changes sign, the amplitude esti- 
mate remains unchanged, and the phase estimate 
jumps 180 degrees. 

In the past two years, considerable progress has 
been made on short-time Fourier analysis-synthesis 
formulations that do not require an explicit phase 
calculation (Griffin and Lim 1984). These magni- 
tude-only techniques are potentially superior to the 
phase vocoder for applications such as time scaling 
because these new techniques are based on a mathe- 
matical formulation that guarantees an optimal re- 
sult (i.e., some measure of error between actual and 
desired resyntheses is minimized). 

In contrast, the phase-vocoder approach to time- 
scaling is basically a heuristic one. The phase- 
vocoder modifications to the short-time Fourier 
transform do not actually result in a valid short- 
time Fourier transform. The modified transform can 
still be inverted to accomplish resynthesis, but the 
short-time Fourier transform of the resynthesized 
signal is not the same as the transform from which 
it was synthesized. Nevertheless, the phase vocoder 
remains a very powerful tool for sound manipula- 
tion, and an understanding of the phase vocoder re- 
mains as the fundamental step from which future 
innovations can proceed. 
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